IEEE Trans Image Process
February 2024
In the European Union and worldwide there are a burgeoning markets for plant growth promoting microorganisms (PGPM) and other biological agents as soil improvers, bio-fertilizers, plant bio-stimulants, and biological control agents or bio-pesticides. Microbial agents have a major share in this development. The use of such products is often advertised with the promise of contributing to sustainable agricultural practices by increasing crop growth and yield and offering an alternative or substitute to decrease the dependency of agriculture on hazardeous agrochemicals.
View Article and Find Full Text PDFCurrent use of mineral nitrogen (N) fertilizers is unsustainable because of its high fossil energy requirements and a considerable enrichment of the biosphere with reactive N. Biological nitrogen fixation (BNF) from leguminous crops is the most important renewable primary N source, especially in organic farming. However, it remains unclear to which degree BNF can sustainably replace mineral N, overcome the organic to conventional (O:C) yield gap and contribute to food security.
View Article and Find Full Text PDFA growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2021
We consider lossy compression of a broad class of bilevel images that satisfy the smoothness criterion, namely, images in which the black and white regions are separated by smooth or piecewise smooth boundaries, and especially lossy compression of complex bilevel images in this class. We propose a new hierarchical compression approach that extends the previously proposed fixed-grid lossy cutset coding (LCC) technique by adapting the grid size to local image detail. LCC was claimed to have the best rate-distortion performance of any lossy compression technique in the given image class, but cannot take advantage of detail variations across an image.
View Article and Find Full Text PDF