Publications by authors named "D Neri"

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly type of cancer, with an extremely low five-year overall survival rate. To date, current treatment options primarily involve various chemotherapies, which often prove ineffective and are associated with substantial toxicity. Furthermore, immunotherapies utilizing checkpoint inhibitors have shown limited efficacy in this context, highlighting an urgent need for novel therapeutic strategies.

View Article and Find Full Text PDF

OncoFAP is an ultrahigh affinity ligand of fibroblast activation protein (FAP), a tumor-associated antigen overexpressed in the stroma of the majority of solid tumors. OncoFAP has been previously implemented as a tumor-homing moiety for the development of small molecule drug conjugates (SMDCs). In the same context, the glycine--proline dipeptide was included with the aim to selectively undergo cleavage only in the presence of the target FAP, triggering the consequent release of the cytotoxic payload in the tumor microenvironment.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) derives from hematopoietic stem and progenitor cells (HSPCs). To date, no AML-exclusive, non-HSPC-expressed cell-surface target molecules for AML selective immunotherapy have been identified. Therefore, to still apply surface-directed immunotherapy in this disease setting, time-limited combined immune-targeting of AML cells and healthy HSPCs, followed by hematopoietic stem cell transplantation (HSCT), might be a viable therapeutic approach.

View Article and Find Full Text PDF
Article Synopsis
  • Lu-OncoFAP-23 is a new targeted treatment that shows promising effects against tumors while maintaining presence in the targeted area for a long time.
  • Research was conducted on different dosages of Lu-OncoFAP-23 in mice, showing that the distribution and effectiveness depend significantly on the amount injected.
  • An optimal dosage range of 90 to 250 nmol/kg was found to provide the best balance of tumor targeting while minimizing unwanted absorption in healthy organs, aiding in future clinical trial designs.
View Article and Find Full Text PDF
Article Synopsis
  • Somatostatin receptor type 2 (SSTR2) is commonly found on certain tumors, including gastro-entero-pancreatic neuroendocrine tumors and breast cancer, making it a target for therapy.
  • Researchers developed a novel fluorescent-peptide antagonist, Octo-Fluo, that works with genetically engineered CAR T-cells to selectively trigger cell death in SSTR2-expressing cancer cells.
  • In laboratory and animal studies, Octo-Fluo enhanced the effectiveness of AdFITC(E2)-CAR T-cells against tumors, but high concentrations of Octo-Fluo could reduce its effectiveness by saturating both the CAR and SSTR2, highlighting the importance of dosage for treatment success.
View Article and Find Full Text PDF