A key challenge in the development of organic mixed ionic-electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron-transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) can be used to create biosensors, wearable devices and neuromorphic systems. However, restrictions in the micro- and nanopatterning of organic semiconductors, as well as topological irregularities, often limit their use in monolithically integrated circuits. Here we show that the micropatterning of organic semiconductors by electron-beam exposure can be used to create high-density (up to around 7.
View Article and Find Full Text PDFUnderstanding the structural and dynamic properties of disordered systems at the mesoscale is crucial. This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which undergo significant and complex structural changes when operated in an electrolyte. In this study, we investigate the mesoscale strain, reversibility and dynamics of a model OMIEC material under external electrochemical potential using operando X-ray photon correlation spectroscopy.
View Article and Find Full Text PDFThe introduction of oligoether side chains onto a polymer backbone can help to stabilise polymeric dispersions in water without the necessity of surfactants or additives when conjugated polymer nanoparticles are prepared. A series of poly(3-hexylthiophene) (P3HT) derivatives with different content of a polar thiophene derivative 3-((2-methoxyethoxy)methyl)thiophene was interrogated to find the effect of the polar chains on the stability of the formed nanoparticles, as well as their structural, optical, electrochemical, and electrical properties. Findings indicated that incorporation of 10-20 percent of the polar side chain led to particles that are stable over a period of 42 days, with constant particle size and polydispersity, however the particles from the polymer with 30 percent polar side chain showed aggregation effects.
View Article and Find Full Text PDF