Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs).
View Article and Find Full Text PDFThe process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence.
View Article and Find Full Text PDFTissue-relevant O levels are considered as an important tool for the preconditioning of multipotent mesenchymal stromal cells (MSCs) for regenerative medicine needs. The present study investigated the quality and functions of the extracellular matrix (ECM) of MSCs under low O levels. Human adipose tissue-derived MSCs were continuously expanded under normoxia (20% O, N) or "physiological" hypoxia (5% O, Hyp).
View Article and Find Full Text PDFCell senescence leads to changes in the secretory activity of mesenchymal stem cells (MSC), including proteins of extracellular matrix (ECM). Here we studied the regulatory properties of ECM of senescent MSC in a model with endothelial cells (EC). EC were seeded onto a decellularized extracellular matrix of senescent MSC.
View Article and Find Full Text PDFNormalization of secretory activity and differentiation status of mesenchymal cells, including fibroblasts, is an important biomedical problem. One of the possible solutions is modulation of unfolded protein response (UPR) activated during fibroblast differentiation. Here, we investigated the effect of phytohormones on the secretory activity and differentiation of cultured human skin fibroblasts.
View Article and Find Full Text PDF