Publications by authors named "D N M Donoghue"

Aim Of Study: Chromosomal translocations involving neurotrophic receptor tyrosine kinases (NTRKs) have been identified in 20 % of soft tissue sarcomas. This work focuses on the EML4-NTRK3 translocation identified in cases of Infantile Fibrosarcoma, which contains the coiled-coil multimerization domain of Echinoderm Microtubule-like protein 4 (EML4) fused with the tyrosine kinase domain of Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3). The aim of the study was to test the importance of tyrosine kinase activity and multimerization for the oncogenic activity of EML4-NTRK3.

View Article and Find Full Text PDF

Neurotrophic receptor tyrosine kinases (NTRKs) belong to the receptor tyrosine kinase (RTK) family. NTRKs are responsible for the activation of multiple downstream signaling pathways that regulate cell growth, proliferation, differentiation, and apoptosis. NTRK-associated mutations often result in oncogenesis and lead to aberrant activation of downstream signaling pathways including MAPK, JAK/STAT, and PLCγ1.

View Article and Find Full Text PDF

FGFR3-TACC3 represents an oncogenic fusion protein frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Various exon breakpoints of FGFR3-TACC3 have been identified in cancers; these were analyzed to determine the minimum contribution of TACC3 for activation of the FGFR3-TACC3 fusion protein. While TACC3 exons 11 and 12 are dispensable for activity, our results show that FGFR3-TACC3 requires exons 13-16 for biological activity.

View Article and Find Full Text PDF
Article Synopsis
  • The NTRK genes can undergo chromosomal changes that lead to the creation of fusion proteins, which are linked to various tumors, especially in children, where they account for about 15% of childhood cancers like Pediatric Sarcomas and Infantile Fibrosarcoma.
  • NTRK fusion proteins act as driver oncogenes in several types of cancers and require N-terminal fusion partners for their function, illustrating the complexity and role of these proteins in cancer development.
  • Therapeutic strategies, including tyrosine kinase inhibitors like larotrectinib and newer agents like selitrectinib, show promise in targeting NTRK fusion-positive cancers, but resistance mutations pose challenges in treatment effectiveness.
View Article and Find Full Text PDF

Translocation of Fibroblast Growth Factor Receptors (FGFRs) often leads to aberrant cell proliferation and cancer. The BCR-FGFR1 fusion protein, created by chromosomal translocation t(8;22)(p11;q11), contains Breakpoint Cluster Region (BCR) joined to Fibroblast Growth Factor Receptor 1 (FGFR1). BCR-FGFR1 represents a significant driver of 8p11 myeloproliferative syndrome, or stem cell leukemia/lymphoma, which progresses to acute myeloid leukemia or T-cell lymphoblastic leukemia/lymphoma.

View Article and Find Full Text PDF