Publications by authors named "D N Basov"

Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering.

View Article and Find Full Text PDF

Surface plasmon polaritons (SPPs) provide a window into the nano-optical, electrodynamic response of their host material and its dielectric environment. Graphene/α-RuCl serves as an ideal model system for imaging SPPs since the large work function difference between these two layers facilitates charge transfer that hole dopes graphene with ∼ 10 cm free carriers. In this work, we study the emergent THz response of graphene/α-RuCl heterostructures using our home-built cryogenic scanning near-field optical microscope.

View Article and Find Full Text PDF
Article Synopsis
  • Polaritons are quasiparticles formed from light and matter that influence how quantum materials respond optically, making them useful for technologies like communication and sensing at the nanoscale.
  • The study focuses on Landau-phonon polaritons (LPPs) found in magnetized, charge-neutral graphene that is encapsulated in a material called hexagonal boron nitride (hBN), revealing new interactions between different particle modes.
  • Using a technique called infrared magneto-nanoscopy, researchers discovered that they can completely stop the movement of LPPs at specific magnetic fields, which challenges traditional optical rules and provides insights into critical phenomena related to electrons in the material.
View Article and Find Full Text PDF

Kagome vanadates AVSb display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScVSn, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).

View Article and Find Full Text PDF

Pump-probe nano-optical experiments were used to study the light-induced insulator to metal transition (IMT) in thin films of vanadium dioxide (VO_{2}), a prototypical correlated electron system. We show that inhomogeneous optical contrast is prompted by spatially uniform photoexcitation, indicating an inhomogeneous photosusceptibility of VO_{2}. We locally characterize temperature and time dependent variations of the photoexcitation threshold necessary to induce the IMT on picosecond timescales with hundred nanometer spatial resolution.

View Article and Find Full Text PDF