The presence of pharmaceuticals in the aquatic environment is increasing due to their growing use for human health. Although most studies are based on short exposures to these contaminants, the present study has emerged from the need to study pharmaceuticals in aquatic organisms over a long-term exposure to understand any multi-generational chronic effects and alterations regarding habitat selection. Therefore, this study shows: (1) the ability of Daphnia magna to colonize environments contaminated with caffeine, ibuprofen and fluoxetine, and (2) the effect of these pharmaceuticals on reproduction and habitat selection (under two scenarios: with and without food) after a long-term exposure period of three generations.
View Article and Find Full Text PDFHabitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes.
View Article and Find Full Text PDFDespite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms.
View Article and Find Full Text PDFMetallurgical industries are a continuous source of air pollution due to the amount of settleable particulate matter (SePM) they release. This SePM is a complex mixture formed by metallic nanoparticles and metals, which reach terrestrial and aquatic ecosystems and can be a significant source of contamination. The aim of this study was to evaluate the adverse effects of SePM at different levels of biological organization in order to estimate its ecological impacts on aquatic ecosystems.
View Article and Find Full Text PDFContamination is likely to affect the composition of an ecological landscape, leading to the rupture of ecological connectivity among habitats (ecological fragmentation), which may impact on the distribution, persistence and abundance of populations. In the current study, different scenarios within a spatially heterogeneous landscape were simulated in the Heterogeneous Multi-Habitat Assay System (HeMHAS) to evaluate the potential effect that contamination (copper at 0.5 and 25 μg/L) might have on habitat selection by the estuarine shrimp Palaemon varians in combination with two other ecological factors: predator presence and food availability.
View Article and Find Full Text PDF