The particulate properties of α-lactose monohydrate (αLMH), an excipient and carrier for pharmaceuticals, is important for the design, formulation and performance of a wide range of drug products. Here an integrated multi-scale workflow provides a detailed molecular and inter-molecular (synthonic) analysis of its crystal morphology, surface chemistry and surface energy. Predicted morphologies are validated in 3D through X-ray diffraction (XCT) contrast tomography.
View Article and Find Full Text PDFRigorous risk assessments for those exposed to pesticides are carried out to satisfy crop protection regulatory requirements. Non-dietary risk assessments involve estimating the amount of residue which can be transferred from plant foliage to the skin or clothes, known as dislodgeable foliar residues (DFRs). DFR data are less available than crop residue data as studies are costly and limited by seasonality.
View Article and Find Full Text PDFEmulsions are complex. Dispersing two immiscible phases, thus expanding an interface, requires effort to achieve and the resultant dispersion is thermodynamically unstable, driving the system toward coalescence. Furthermore, physical instabilities, including creaming, arise due to presence of dispersed droplets of different densities to a continuous phase.
View Article and Find Full Text PDFGrid-based systematic search methods are used to investigate molecule-molecule, molecule-surface, and surface-surface contributions to interparticle interactions in order to identify the crystal faces that most strongly affect particle behavior during powder blend formulation and delivery processes. The model system comprises terbutaline sulfate (TBS) as an active pharmaceutical ingredient (API) and α-form lactose monohydrate (LMH). A combination of systematic molecular modeling and X-ray computed tomography (XCT) is used to determine not only the adhesive and cohesive interparticle energies but, also the agglomeration behavior during manufacturing and de-agglomeration behavior during delivery after inhalation.
View Article and Find Full Text PDFDry powder inhalers (DPI) are important for topical drug delivery to the lungs, but characterising the pre-aerosolised powder microstructure is a key initial step in understanding the post-aerosolised blend performance. In this work, we characterise the pre-aerosolised 3D microstructure of an inhalation blend using correlative multi-scale X-ray Computed Tomography (XCT), identifying lactose and drug-rich phases at multiple length scales on the same sample. The drug-rich phase distribution across the sample is shown to be homogeneous on a bulk scale but heterogeneous on a particulate scale, with individual clusters containing different amounts of drug-rich phase, and different parts of a carrier particle coated with different amounts of drug-rich phase.
View Article and Find Full Text PDF