Publications by authors named "D Mukhin"

Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval.

View Article and Find Full Text PDF

Natural and social systems exhibit complex behavior reflecting their rich dynamics, whose governing laws are not fully known. This study develops a unified data-driven approach to estimate predictability of such systems when several independent realizations of the system's evolution are available. If the underlying dynamics are quasi-linear, the signal associated with the variable external factors, or forcings, can be estimated as the ensemble mean; this estimation can be optimized by filtering out the part of the variability with a low ensemble-mean-signal-to-residual-noise ratio.

View Article and Find Full Text PDF

The low-frequency variability of the extratropical atmosphere involves hemispheric-scale recurring, often persistent, states known as teleconnection patterns or regimes, which can have a profound impact on predictability on intra-seasonal and longer timescales. However, reliable data-driven identification and dynamical representation of such states are still challenging problems in modeling the dynamics of the atmosphere. We present a new method, which allows us both to detect recurring regimes of atmospheric variability and to obtain dynamical variables serving as an embedding for these regimes.

View Article and Find Full Text PDF

Interval stability is a novel method for the study of complex dynamical systems, allowing for the estimation of their stability to strong perturbations. This method describes how large perturbation should be to disrupt the stable dynamical regime of the system (attractor). In our work, interval stability is used for the first time to study the properties of a real natural system: to analyze the stability of the earth's climate system during the last 2.

View Article and Find Full Text PDF

A Bayesian Linear Dynamical Mode (LDM) decomposition method is applied to isolate robust modes of climate variability in the observed surface air temperature (SAT) field. This decomposition finds the optimal number of internal modes characterized by their own time scales, which enter the cost function through a specific choice of prior probabilities. The forced climate response, with time dependence estimated from state-of-the-art climate-model simulations, is also incorporated in the present LDM decomposition and shown to increase its optimality from a Bayesian standpoint.

View Article and Find Full Text PDF