The use of oncolytic viruses as cancer treatment has received considerable attention in recent years, however the spatial dynamics of this viral infection is still poorly understood. We present here a stochastic agent-based model describing infected and uninfected cells for solid tumours, which interact with viruses in the absence of an immune response. Two kinds of movement, namely undirected random and pressure-driven movements, are considered: the continuum limit of the models is derived and a systematic comparison between the systems of partial differential equations and the individual-based model, in one and two dimensions, is carried out.
View Article and Find Full Text PDFThis work is focused on the application of Life Cycle Assessment (LCA) methodology for the quantification of the potential environmental impacts associated with the obtainment of levulinic acid from residual L. biomass and its subsequent valorization in innovative bioplasticizers for tuning the properties as well as the processability of biopolymers. This potentially allows the production of fully biobased and biodegradable bioplastic formulations, thus addressing the issues related to the fossil origin and nonbiodegradability of conventional additives, such as phthalates.
View Article and Find Full Text PDFFully biobased and biodegradable materials have attracted a growing interest in the food packaging sector as they can help to reduce the negative impact of fossil-based plastics on the environment. Moreover, the addition of functionalities to these materials by introducing active molecules has become an essential requirement to create modern packaging able to extend food's shelf-life while informing the consumer about food quality and freshness. In this study, we present an innovative bioplastic formulation for food packaging based on poly(hydroxybutyrate--valerate) (PHBV) and tannins as multifunctional additives.
View Article and Find Full Text PDF