The biochemical valorization potential of food waste (FW) could be exploited by extracting decreasing added-value bio-based products and converting the final residues into energy. In this context, multi-purpose and versatile schemes integrating thermal and biochemical conversion processes will play a key role. An upstream thermal pretreatment + solid-liquid separation unit was here proposed to optimize the conversion of the liquid fraction of FW into valuable chemicals through semi-continuous fermentation process, and the conversion of the residual solid fraction into biomethane through anaerobic digestion.
View Article and Find Full Text PDFThis study explored the potential of Food Waste (FW) extract as a suitable substrate for Medium Chain Fatty Acids (MCFAs) production, in a single-phase reactor, where both fermentation and Chain Elongation (CE) processes occurred simultaneously. A continuous experiment was conducted with an Organic Loading Rate (OLR) = 20 gCOD L d and was fed in batch mode twice a week with pH = 6. In addition, four batch tests were performed, to assess the effects on the MCFAs production of caproate inhibition, hydrogen partial pressure (P) and different lactate/acetate ratios.
View Article and Find Full Text PDFThis study aimed at modelling the performance of a novel MBBR configuration, named A/O-MBBR, comprised of a pre-anoxic reactor, with an HRT of 4.5 h, coupled with an intermittent anoxic/aerobic MBBR (HRT = 6.8 h).
View Article and Find Full Text PDFIn a circular economy strategy, waste resources can be used for the biological production of high added-value substances, such as medium chain fatty acids (MCFAs), thus minimising waste and favouring a sustainable process. This study investigates single-stage fermentation processes for the production of MCFAs in a semi-continuous reactor treating the extract of real food waste (FW), without the addition of external electron donors. Two sequential acidogenic fermentation tests were carried out at an organic loading rate (OLR) of 5 and 15 gCOD Ld with a hydraulic retention time of 4 days and pH controlled at 6 ± 0.
View Article and Find Full Text PDFBiowaste valorization through anaerobic digestion is an attractive option to achieve both climate protection goals and renewable energy production. In this paper, a complete set of batch trials was carried out on kitchen waste to investigate the effects of mild thermal pretreatment, temperature regimen and substrate/inoculum ratio. Thermal pretreatment was effective in the solubilisation of macromolecular fractions, particularly carbohydrates.
View Article and Find Full Text PDF