Dietary protein is a key regulator of healthy aging in both mice and humans. In mice, reducing dietary levels of the branched-chain amino acids (BCAAs) recapitulates many of the benefits of a low protein diet; BCAA-restricted diets extend lifespan, reduce frailty, and improve metabolic health, while BCAA supplementation shortens lifespan, promotes obesity, and impairs glycemic control. Recently, high protein diets have been shown to promote cellular senescence, a hallmark of aging implicated in many age-related diseases, in the liver of mice.
View Article and Find Full Text PDFObjective: Pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) can attenuate experimental osteoarthritis (OA) in young, male preclinical models. However, the potential of mTOR inhibition as a therapeutic mechanism for OA remains unknown. The goal of this study was to determine if mTOR-inhibition by oral rapamycin can modify OA pathology in the common marmoset, a translational model of age-associated OA.
View Article and Find Full Text PDFAge-related osteoarthritis (OA) is a degenerative joint disease characterized by pathological changes in nearly every intra- and peri-articular tissue that contributes to disability in older adults. Studying the etiology of age-related OA in humans is difficult due to an unpredictable onset and insidious nature. A barrier in developing OA modifying therapies is the lack of translational models that replicate human joint anatomy and age-related OA progression.
View Article and Find Full Text PDFChemRxiv was launched on August 15, 2017 to provide researchers in chemistry and related fields a home for the immediate sharing of their latest research. In the past five years, ChemRxiv has grown into the premier preprint server for the chemical sciences, with a global audience and a wide array of scholarly content that helps advance science more rapidly. On the service's fifth anniversary, we would like to reflect on the past five years and take a look at what is next for ChemRxiv.
View Article and Find Full Text PDFChemRxiv was launched on August 15, 2017, to provide researchers in chemistry and related fields a home for the immediate sharing of their latest research. In the past five years, ChemRxiv has grown into the premier preprint server for the chemical sciences, with a global audience and a wide array of scholarly content that helps advance science more rapidly. On the service's fifth anniversary, we would like to reflect on the past five years and take a look at what is next for ChemRxiv.
View Article and Find Full Text PDF