Publications by authors named "D Millet"

Ethane is the most abundant non-methane hydrocarbon in the troposphere, where it impacts ozone and reactive nitrogen and is a key tracer used for partitioning emitted methane between anthropogenic and natural sources. However, quantification has been challenged by sparse observations. Here, we present a satellite-based measurement of tropospheric ethane and demonstrate its utility for fossil-fuel source quantification.

View Article and Find Full Text PDF

Indirect nitrous oxide (NO) emissions from streams and rivers are a poorly constrained term in the global NO budget. Current models of riverine NO emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine NO, but do not explicitly consider direct NO input from terrestrial ecosystems. Here, we combine NO isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine NO in a mesoscale river network within the U.

View Article and Find Full Text PDF

The hydroxyl radical (OH) is the central oxidant in Earth's troposphere, but its temporal variability is poorly understood. We combine 2012-2020 satellite-based isoprene and formaldehyde measurements to identify coherent OH changes over temperate and tropical forests with attribution to emission trends, biotic stressors, and climate. We identify a multiyear OH decrease over the Southeast United States and show that with increasingly hot/dry summers the regional chemistry could become even less oxidizing depending on competing temperature/drought impacts on isoprene.

View Article and Find Full Text PDF

Schools may have important impacts on children's exposure to ambient air pollution, yet ambient air quality at schools is not consistently tracked. We characterize ambient air quality at home and school locations in the United States using satellite-based empirical model (i.e.

View Article and Find Full Text PDF

The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO = NO + NO) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models.

View Article and Find Full Text PDF