The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).
View Article and Find Full Text PDF3',5'-Cyclic adenosine monophosphate (cAMP), the first identified second messenger, is implicated in diverse cellular processes involving cellular metabolism, cell proliferation and differentiation, apoptosis, and gene expression. cAMP is synthesized by adenylyl cyclase (AC), which converts ATP to cAMP upon activation of G-protein coupled receptors (GPCRs) in most cases and hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs) to 5'-AMP. Dysregulation of cAMP signaling is implicated in a wide range of pathophysiological conditions such as cardiovascular diseases, neurodegenerative and behavioral disorders, cancers, diabetes, obesity, cataracts, and others.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2023
Cyclic guanosine monophosphate (cGMP) is a critical second messenger involved in various physiological processes, such as vasodilation and phototransduction. Its synthesis is stimulated by nitric oxide and natriuretic hormones, while its breakdown is mediated through highly regulated phosphodiesterase activities. cGMP metabolism has been targeted for the treatment of several diseases, including erectile dysfunction, hypertension, and heart failure.
View Article and Find Full Text PDFThe discovery of new PROTAC molecules is dependent on robust and high-throughput assays to measure PROTAC-protein interactions and ternary complex formation. Here we present the optimization and execution of Lumit Immunoassays to measure PROTAC binding and ternary complex formation in a biochemical format. We demonstrate how Lumit can be used to rank order affinities of small molecules and PROTACs to BRD4(BD1, BD2) and how to measure PROTAC-mediated ternary complex formation of BRD4(BD1, BD2) and E3 Ligase VHL.
View Article and Find Full Text PDFBoth oncogenic and tumor suppressor roles have been assigned to Notch signaling in melanoma. In clinical trials, Notch inhibitors proved to be ineffective for melanoma treatment. Notch signaling has also been implicated in melanoma transdifferentiation, a prognostic feature in primary melanoma.
View Article and Find Full Text PDF