Rationale: Lung ultrasound, the most precise diagnostic tool for pleural effusions, is underutilized due to healthcare providers' limited proficiency. To address this, deep learning models can be trained to recognize pleural effusions. However, current models lack the ability to diagnose effusions in diverse clinical contexts, which presents significant challenges.
View Article and Find Full Text PDFBackground: Eating disorders during the perinatal period can pose significant risks to both the mother and the baby. Clinical practice guidelines include statements of expected practice intending to improve effectiveness and quality of care within health care services. This systematic review aimed to identify and synthesise current clinical practice guideline recommendations on the assessment, management and treatment of eating disorders during the perinatal period.
View Article and Find Full Text PDFNon-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.
View Article and Find Full Text PDFIntroduction: Benign and malignant myxoid soft tissue tumors have shared clinical, imaging, and histologic features that can make diagnosis challenging. The purpose of this study is comparison of the diagnostic performance of a radiomic based machine learning (ML) model to musculoskeletal radiologists.
Methods: Manual segmentation of 90 myxoid soft tissue tumors (45 myxomas and 45 myxofibrosarcomas) was performed on axial T1, and T2FS or STIR magnetic resonance imaging sequences.
The are a family of non-segmented positive-sense enveloped RNA viruses containing significant pathogens including hepatitis C virus and yellow fever virus. Recent large-scale metagenomic surveys have identified many diverse RNA viruses related to classical orthoflaviviruses and pestiviruses but quite different genome lengths and configurations, and with a hugely expanded host range that spans multiple animal phyla, including molluscs, cnidarians and stramenopiles,, and plants. Grouping of RNA-directed RNA polymerase (RdRP) hallmark gene sequences of flavivirus and 'flavi-like' viruses into four divergent clades and multiple lineages within them was congruent with helicase gene phylogeny, PPHMM profile comparisons, and comparison of RdRP protein structure predicted by AlphFold2.
View Article and Find Full Text PDF