Atypical teratoid/rhabdoid tumors (ATRTs) are highly malignant embryonal tumors of the central nervous system with a dismal prognosis. Using a newly developed and validated patient-derived ATRT culture and xenograft model, alongside a panel of primary ATRT models, we found that ATRTs are selectively sensitive to the nucleoside analog gemcitabine. Gene expression and protein analyses indicate that gemcitabine treatment causes the degradation of sirtuin 1 (SIRT1), resulting in cell death through activation of nuclear factor κB (NF-κB) and p53.
View Article and Find Full Text PDFBecause of the low mutational burden and consequently, fewer potential neoantigens, children with acute myeloid leukemia (AML) are thought to have a T cell-depleted or 'cold' tumor microenvironment and may have a low likelihood of response to T cell-directed immunotherapies. Understanding the composition, phenotype, and spatial organization of T cells and other microenvironmental populations in the pediatric AML bone marrow (BM) is essential for informing future immunotherapeutic trials about targetable immune-evasion mechanisms specific to pediatric AML. Here, we conducted a multidimensional analysis of the tumor immune microenvironment in pediatric AML and non-leukemic controls.
View Article and Find Full Text PDFDespite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their efficacy.
View Article and Find Full Text PDFBecause of the low mutational burden and consequently, fewer potential neoantigens, children with acute myeloid leukemia (AML) are thought to have a T cell-depleted or 'cold' tumor microenvironment and may have a low likelihood of response to T cell-directed immunotherapies. Understanding the composition, phenotype, and spatial organization of T cells and other microenvironmental populations in the pediatric AML bone marrow (BM) is essential for informing future immunotherapeutic trials about targetable immune-evasion mechanisms specific to pediatric AML. Here, we conducted a multidimensional analysis of the tumor immune microenvironment in pediatric AML and non-leukemic controls.
View Article and Find Full Text PDFBrain tumors are the leading cause of cancer-related mortality in children. Despite the development of immunotherapeutic strategies for adult brain tumors, progress in pediatric neuro-oncology has been hindered by the complex and poorly understood nature of the brain's immune system during early development, a phase that is critical for the onset of many pediatric brain tumors. A defining characteristic of these tumors is the abundance of microglia, the resident immune cells of the central nervous system.
View Article and Find Full Text PDF