Publications by authors named "D Mercadante"

Article Synopsis
  • Eukaryotic translation initiation factor eIF4B is crucial for effective cap-dependent translation, is commonly overexpressed in cancer cells, and may play a role in stress granule formation.
  • Due to its high intrinsic disorder, eIF4B is often not seen in cryo-EM studies of translation complexes, with most observations limited to its structured RNA recognition motif domain.
  • Research incorporating experiments and simulations reveals that eIF4B's intrinsically disordered region (IDR) helps transition from monomers to larger dynamic oligomers, influenced by factors like ionic strength and molecular crowding, hinting at potential regulatory mechanisms affecting its behavior in cells.
View Article and Find Full Text PDF

Structural disorder in proteins is central to cellular signaling, where conformational plasticity equips molecules to promiscuously interact with different partners. By engaging with multiple binding partners via the rearrangement of its three helices, the nuclear coactivator binding domain (NCBD) of the CBP/p300 transcription factor is a paradigmatic example of promiscuity. Recently, molecular simulations and experiments revealed that, through the establishment of long-range electrostatic interactions, intended as salt-bridges formed between the post-translationally inserted phosphate and positively charged residues in helix H3 of NCBD, phosphorylation triggers NCBD compaction, lowering its affinity for binding partners.

View Article and Find Full Text PDF

More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility.

View Article and Find Full Text PDF

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control.

View Article and Find Full Text PDF

Background: The management of respiratory distress syndrome (RDS) in premature newborns is based on different types of non-invasive respiratory support and on surfactant replacement therapy (SRT) to avoid mechanical ventilation as it may eventually result in lung damage. European guidelines currently recommend SRT only when the fraction of inspired oxygen (FiO) exceeds 0.30.

View Article and Find Full Text PDF