Aims/hypothesis: Prolonged exposure of beta cells to low glucose concentrations triggers their apoptosis and is known to activate AMP-activated protein kinase (AMPK) in beta cell lines. We examined whether prolonged activation of AMPK can trigger apoptosis in rodent beta cells.
Methods: Primary beta cells were FACS-purified from rats, and from wild-type and AMPK(alpha2)-deficient mice.
The discovery of the AMP-activated protein kinase (AMPK) more than a decade ago has shed much light on the cellular response to stresses characterized by a fall in the concentration of ATP and an increase in the AMP/ATP ratio. All conditions known to increase this ratio activate AMPK, whose major role is to act as an emergency signal to conserve ATP. It does so by inhibiting anabolic processes and by activating pathways producing ATP.
View Article and Find Full Text PDFThe aim of this work was to study the effect of a sustained activation of AMP-activated protein kinase (AMPK) on liver cell survival. AMPK activation was achieved by incubating FTO2B cells with AICA-riboside, which is transformed into ZMP, an AMP analogue, or by adenoviral transfection of hepatocytes with a constitutively active form of AMPK. Prolonged AMPK activation triggered apoptosis and activated c-Jun N-terminal kinase (JNK) and caspase-3.
View Article and Find Full Text PDFIn this paper, we demonstrated that in cultured rat hepatocytes cell swelling induced the activation of STAT1 and STAT3 proteins without any effect on STAT4, STAT5 and STAT6 proteins. Cell swelling induced an activation of STAT proteins through an increase in the phosphorylation of the tyrosine residue also phosphorylated by interleukin-6, but without any activation of JAK kinases. The signaling pathway by which cell swelling activated STAT1 and STAT3 is discussed.
View Article and Find Full Text PDF