Publications by authors named "D Medvigy"

Article Synopsis
  • Most forest carbon measurements overlook the carbon loss from dead branches, which is an important part of tree physiology.
  • Analyzing data from over 184,000 trees across various forests revealed that considering branch turnover can raise aboveground wood production estimates by 16%, affecting global carbon sink calculations.
  • To improve carbon estimates, researchers suggest changing field measurement methods and models to properly account for branch turnover, as current methods significantly underestimate carbon loss.
View Article and Find Full Text PDF

Enhancement of net primary production (NPP) in forests as atmospheric [CO ] increases is likely limited by the availability of other growth resources. The Duke Free Air CO Enrichment (FACE) experiment was located on a moderate-fertility site in the southeastern US, in a loblolly pine (Pinus taeda L.) plantation with broadleaved species growing mostly in mid-canopy and understory.

View Article and Find Full Text PDF

The strength and persistence of the tropical carbon sink hinges on the long-term responses of woody growth to climatic variations and increasing CO . However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.

View Article and Find Full Text PDF

Lianas, or woody vines, and trees dominate the canopy of tropical forests and comprise the majority of tropical aboveground carbon storage. These growth forms respond differently to contemporary variation in climate and resource availability, but their responses to future climate change are poorly understood because there are very few predictive ecosystem models representing lianas. We compile a database of liana functional traits (846 species) and use it to parameterize a mechanistic model of liana-tree competition.

View Article and Find Full Text PDF

Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R  = 0.

View Article and Find Full Text PDF