Publications by authors named "D Mawrie"

Defects at the neuromuscular junction (NMJ) are among the earliest hallmarks of amyotrophic lateral sclerosis (ALS). According to the "dying-back" hypothesis, NMJ disruption not only precedes but also triggers the subsequent degeneration of motoneurons in both sporadic (sALS) and familial (fALS) ALS. Using human induced pluripotent stem cells (iPSCs), we show that the RNA-binding protein HuD (ELAVL4) contributes to NMJ defects and apoptosis in FUS-ALS.

View Article and Find Full Text PDF

Early defects at the neuromuscular junction (NMJ) are among the first hallmarks of the progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS). According to the "dying back" hypothesis, disruption of the NMJ not only precedes, but is also a trigger for the subsequent degeneration of the motoneuron in both sporadic and familial ALS, including ALS caused by the severe pathogenic variant P525L. However, the mechanisms linking genetic and environmental factors to NMJ defects remain elusive.

View Article and Find Full Text PDF

Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo.

View Article and Find Full Text PDF

The ALS/FTD-linked intronic hexanucleotide repeat expansion in the gene is aberrantly translated in the sense and antisense directions into dipeptide repeat proteins, among which poly proline-arginine (PR) displays the most aggressive neurotoxicity and . PR partitions to the nucleus when heterologously expressed in neurons and other cell types. We show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity.

View Article and Find Full Text PDF

Loss-of-function variants in NIMA-related kinase 1 (NEK1) constitute a major genetic cause of amyotrophic lateral sclerosis (ALS), accounting for 2 to 3% of all cases. However, how mutations cause motor neuron (MN) dysfunction is unknown. Using mass spectrometry analyses for NEK1 interactors and NEK1-dependent expression changes, we find functional enrichment for proteins involved in the microtubule cytoskeleton and nucleocytoplasmic transport.

View Article and Find Full Text PDF