Publications by authors named "D Matthes"

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

The rapid advancement in computational power available for research offers to bring not only quantitative improvements, but also qualitative changes in the field of biomolecular simulation. Here, we review the state of biomolecular dynamics simulations at the threshold to exascale resources becoming available. Both developments in parallel and distributed computing will be discussed, providing a perspective on the state of the art of both.

View Article and Find Full Text PDF

This study investigates infants' neural and behavioral responses to maternal ostensive signals during naturalistic mother-infant interactions and their effects on object encoding. Mothers familiarized their 9- to 10-month-olds (N = 35, 17 females, mainly White, data collection: 2018-2019) with objects with or without mutual gaze, infant-directed speech, and calling the infant's name. Ostensive signals focused infants' attention on objects and their mothers.

View Article and Find Full Text PDF

Oligomeric aggregates of the amyloid-beta peptide(1-42) (Aβ42) are regarded as a primary cause of cytotoxicity related to membrane damage in Alzheimer's disease. However, a dynamical and structural characterization of pore-forming Aβ42 oligomers at atomic detail has not been feasible. Here, we used Aβ42 oligomer structures previously determined in a membrane-mimicking environment as putative model systems to study the pore formation process in phospholipid bilayers with all-atom molecular dynamics simulations.

View Article and Find Full Text PDF

α-synuclein misfolding and aggregation into fibrils is a common feature of α-synucleinopathies, such as Parkinson's disease, in which α-synuclein fibrils are a characteristic hallmark of neuronal inclusions called Lewy bodies. Studies on the composition of Lewy bodies extracted postmortem from brain tissue of Parkinson's patients revealed that lipids and membranous organelles are also a significant component. Interactions between α-synuclein and lipids have been previously identified as relevant for Parkinson's disease pathology, however molecular insights into their interactions have remained elusive.

View Article and Find Full Text PDF