Publications by authors named "D Mantini"

Electromyographic (EMG) sensors are essential tools for analyzing muscle activity, but traditional designs often face challenges such as motion artifacts, signal variability, and limited wearability. This study introduces a novel EMG sensor fabricated using Aerosol Jet Printing (AJP) technology that addresses these limitations with a focus on precision, flexibility, and stability. The innovative sensor design minimizes air interposition at the skin-electrode interface, thereby reducing variability and improving signal quality.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the amount of motor rehabilitation affects upper limb (UL) motor recovery in stroke survivors, highlighting a significant link between rehabilitation dosage and motor function outcomes.
  • It uses assessments on motor, cognitive, and neurophysiological variables to analyze this relationship, finding that baseline motor ability is a key predictor.
  • Attention levels in patients are noted as a confounding factor that could impact both rehabilitation effectiveness and motor recovery outcomes, suggesting that improved attention may enhance recovery chances.
View Article and Find Full Text PDF

Electroencephalography (EEG) is a technique for non-invasively measuring neuronal activity in the human brain using electrodes placed on the participant's scalp. With the advancement of digital technologies, EEG analysis has evolved over time from the qualitative analysis of amplitude and frequency modulations to a comprehensive analysis of the complex spatiotemporal characteristics of the recorded signals. EEG is now considered a powerful tool for measuring neural processes in the same time frame in which they happen (i.

View Article and Find Full Text PDF

Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults.

View Article and Find Full Text PDF

Cognitive functioning is a crucial aspect in schizophrenia (SZ), and when altered it has devastating effects on patients' quality of life and treatment outcomes. Several studies suggested that they could result from altered communication between the cortex and cerebellum. However, the neural correlates underlying these impairments have not been identified.

View Article and Find Full Text PDF