Publications by authors named "D Mandal"

Article Synopsis
  • A study explored the antioxidant activity of six hydrazone compounds against HOO˙ and CHOO˙ radicals using DFT methods, focusing on three mechanisms: HAT, SETPT, and SPLET.
  • Compound 2 was found to have the highest scavenging rate constants for both radicals, with significant activity in the gas phase as well as in aqueous solutions.
  • Overall, compound 2 demonstrates potential as an effective antioxidant, outperforming some commonly known antioxidants in scavenging activities within physiological environments.
View Article and Find Full Text PDF

This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of -hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)] complex.

View Article and Find Full Text PDF

Herein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.

View Article and Find Full Text PDF

The gas-liquid-solid interface plays a crucial role in various electrochemical energy conversion devices, including fuel cells and electrolyzers. Understanding the effect of gas transfer on the electrochemistry at this three-phase interface is a grand challenge. Scanning electrochemical cell microscopy (SECCM) is an emerging technique for mapping the heterogeneity in electrochemical activity; it also inherently features a three-phase boundary at the nanodroplet cell.

View Article and Find Full Text PDF

Soybean-wheat sequence, one of the most vital cropping systems for farmers, has been suffering for productivity stagnation and decline due to several factors. Strategic management of the inputs particularly the nutrients could aid the crops achieve optimum growth and yield. Keeping this in mind, four years of field experiment was conducted to study the effect of combining inorganic as well as organic nutrient sources using soil-test-crop-response (STCR) approach in a randomized block design having ten treatments including control, 100% Recommended Dose of Fertilizers (RDF), 50% RDF, 100% RDF + 5 kg Zn ha (100% RDF + Zn), 100% RDF + 5 t farmyard manure ha (100% RDF + FYM), 50% RDF + 5 t farmyard manure ha (50% RDF + FYM), STCR inorganic with target yield-I (STCR TY-I), STCR inorganic with TY-II, STCR integrated with TY-I (STCR TY-I) and STCR integrated with TY-II (STCR TY-II) with each treatment replicated thrice.

View Article and Find Full Text PDF