Publications by authors named "D Mancarella"

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.

View Article and Find Full Text PDF

Epigenetic alterations are associated with normal biological processes such as aging or differentiation. Changes in global epigenetic signatures, together with genetic alterations, are driving events in several diseases including cancer. Comparative studies of cancer and healthy tissues found alterations in patterns of DNA methylation, histone posttranslational modifications, and changes in chromatin accessibility.

View Article and Find Full Text PDF

The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.

View Article and Find Full Text PDF

Giant cell tumors of bone (GCTB) are semi-malignant tumors associated with extensive osteolytic defects and massive bone destructions. They display a locally aggressive behavior and a very high recurrence rate. Recently, a single mutation has been identified in GCTB affecting the H3F3A gene coding for the histone variant H3.

View Article and Find Full Text PDF

This article examines the published evidence in support of the classification of organisms into three groups (Bacteria, Archae, and Eukarya) instead of two groups (prokaryotes and eukaryotes) and summarizes the comparative biochemistry of each of the known histone-like, nucleoid DNA-binding proteins. The molecular structures and amino acid sequences of Archae are more similar to those of Eukarya than of Bacteria, with a few exceptions. Cytochemical methodology employed for localizing these proteins in archaeal and bacterial cells has also been reviewed.

View Article and Find Full Text PDF