Binary neural networks (BNNs) can substantially accelerate a neural network's inference time by substituting its costly floating-point arithmetic with bit-wise operations. Nevertheless, state-of-the-art approaches reduce the efficiency of the data flow in the BNN layers by introducing intermediate conversions from 1 to 16/32 bits. We propose a novel training scheme, denoted as that can increase the parallelism and data flow of the BNN pipeline; specifically, we introduce a clipping block that reduces the data width from 32 bits to 8.
View Article and Find Full Text PDFA better understanding of the emergent computation and problem-solving capabilities of recent large language models is of paramount importance to further improve them and broaden their applicability. This work investigates how a language model, trained to predict the next token, can perform arithmetic computations generalizing beyond training data. Binary addition and multiplication constitute a good testbed for this purpose, since they require a very small vocabulary and exhibit relevant input/output discontinuities making smooth input interpolation ineffective for novel data.
View Article and Find Full Text PDFLearning continually is a key aspect of intelligence and a necessary ability to solve many real-life problems. One of the most effective strategies to control catastrophic forgetting, the Achilles' heel of continual learning, is storing part of the old data and replaying them interleaved with new experiences (also known as the replay approach). Generative replay, which is using generative models to provide replay patterns on demand, is particularly intriguing, however, it was shown to be effective mainly under simplified assumptions, such as simple scenarios and low-dimensional data.
View Article and Find Full Text PDFThe ability of a model to learn continually can be empirically assessed in different continual learning scenarios. Each scenario defines the constraints and the opportunities of the learning environment. Here, we challenge the current trend in the continual learning literature to experiment mainly on class-incremental scenarios, where classes present in one experience are never revisited.
View Article and Find Full Text PDFFace morphing and related morphing attacks have emerged as a serious security threat for automatic face recognition systems and a challenging research field. Therefore, the availability of effective and reliable morphing attack detectors is strongly needed. In this paper, we proposed a framework based on a double Siamese architecture to tackle the morphing attack detection task in the differential scenario, in which two images, a trusted live acquired image and a probe image (morphed or bona fide) are given as the input for the system.
View Article and Find Full Text PDF