Relapse after adjuvant chemotherapy or high-dose chemotherapy with stem cell transplant for high-risk breast cancer remains high and new strategies that provide additional antitumor effects are needed. This report describes methods to generate highly effective HER2/neu-specific cytotoxic T cells by arming activated T cells with anti-CD3 x anti-HER2/neu bispecific antibody (BsAb). OKT3 and 9184 (anti-HER2) monoclonal antibodies (mAb) were conjugated and used to arm T cells that were subsequently tested in binding, cytotoxicity, and cytokine secretion assays.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
May 1997
The aim of this study was to test the versatility of a new basal cell culture medium, GTSF-2. In addition to traditional growth-factors, GTSF-2 contains a blend of three sugars (glucose, galactose, and fructose) at their physiological levels. For these studies, we isolated normal endothelial cells from human, bovine, and rat large blood vessels and microvessels.
View Article and Find Full Text PDFThromboembolic complications remain a major problem associated with the long-term clinical use of cardiac prostheses. A promising approach toward resolving this predicament is lining the blood contacting surfaces with a functional monolayer of endothelial cells (EC). In developing an endothelialized cardiac prosthesis, the authors in the past focused on establishing a confluent EC monolayer on the luminal surface of ventricular blood sacs.
View Article and Find Full Text PDFThe authors investigated the multi-step mechanism of healing after cardiomyoplasty, focusing on the process of angiogenesis. The authors contend that enhancement of angiogenesis and prevention of ischemia-reperfusion injuries immediately after muscle mobilization will be effective in improving cardiomyoplasty results. After cardiomyoplasty, autologous biologic glue (ABG) was administered between the latissimus dorsi muscle (LDM) and myocardium.
View Article and Find Full Text PDFSuccessful establishment of a durable endothelial cell (EC) monolayer inside a ventricular blood sac requires homogeneous coverage of the entire luminal surface with attached cells. For this purpose, a new device was developed that slowly rotates a fully assembled cardiac prosthesis with three degrees of freedom. We seeded ECs derived from human adipose tissue at a density of approximately 3.
View Article and Find Full Text PDF