Publications by authors named "D M Tsvetkov"

Article Synopsis
  • * The review discusses the physiological roles of K7.4 and K7.5 channels and recent progress in developing selective modulators that could lead to innovative treatments for hypertension.
  • * Although research has mainly targeted K7.2 and K7.3 channels, there’s a growing need to explore K7.4 and K7.5 for specific, safe, and effective new compounds to enhance blood pressure control in the future.
View Article and Find Full Text PDF

The global market for herbal medicines is valued at $83 billion and continues to expand rapidly. Plant extracts, widely used due to their safety and minimal side effects, play a significant role in supporting liver function. The treatment of liver diseases, including hepatitis of various etiologies, alcoholic and non-alcoholic fatty liver disease, and cirrhosis, involves the use of effective hepatoprotective drugs.

View Article and Find Full Text PDF

Background: Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels.

View Article and Find Full Text PDF

The isolated perfused kidney is a classic ex vivo preparation for studying renal physiology in general and vascular function. Here, we present a protocol for assessing myogenic tone in isolated mouse kidneys as well as vasodilatory and vasoconstrictive responses, expressed as perfusion pressure. We describe steps for pre-operative preparation, kidney and renal artery isolation, and connection of renal artery with glass cannula.

View Article and Find Full Text PDF

Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear.

View Article and Find Full Text PDF