The impact of altering laser focusing conditions on laser-induced breakdown spectroscopy experiments is investigated under ambient Earth laboratory and simulated Martian atmospheres. Experiments were performed in which the focal spot size was varied on a sample by altering the lens to sample distance with respect to targets of interest. Samples investigated include aluminum, copper, and steel.
View Article and Find Full Text PDFThis article discusses laser-induced laboratory-air plasma measurements and analysis of hydroxyl (OH) ultraviolet spectra. The computations of the OH spectra utilize line strength data that were developed previously and that are now communicated for the first time. The line strengths have been utilized extensively in interpretation of recorded molecular emission spectra and have been well-tested in laser-induced fluorescence applications for the purpose of temperature inferences from recorded data.
View Article and Find Full Text PDFThis article reports new measurements of laser-induced plasma hypersonic expansion measurements of diatomic molecular cyanide (CN). Focused, high-peak-power 1064 nm Q-switched radiation of the order of 1 TW/cm 2 generated optical breakdown plasma in a cell containing a 1:1 molar gas mixture of N 2 and CO 2 at a fixed pressure of 1.1 × 10 5 Pascal and in a 100 mL/min flow of the mixture.
View Article and Find Full Text PDFA novel method of determining the total uncertainty in the integrated intensity of fitted emission lines in multipeaked emission spectra is presented. The proposed method does not require an assumption of the type of line profile to be specified. The absolute difference between a fit and measured spectrum defines the uncertainty of the integrated signal intensity and is subsequently decomposed to determine the uncertainty of each peak in multiline fits.
View Article and Find Full Text PDFSpectral measurements of the H(α) Balmer series line and the continuum radiation are applied to draw inferences of electron density, temperature, and the level of self-absorption in laser ablation of a solid ice target in ambient air. Electron densities of 17 to 3.2×10(24) m(-3) are determined from absolute calibrated emission coefficients for time delays of 100-650 ns after generation of laser plasma using Q-switched Nd:YAG radiation.
View Article and Find Full Text PDF