We generate an atomic beam of titanium (Ti) using a "Ti-ball" Ti-sublimation pump, which is a common getter pump used in ultrahigh vacuum systems. We show that the sublimated atomic beam can be optically pumped into the metastable 3d3(4F)4s a5F5 state, which is the lower energy level in a cycling optical transition that can be used for laser cooling. We measure the atomic density and transverse and longitudinal velocity distributions of the beam through laser fluorescence spectroscopy.
View Article and Find Full Text PDFWe realize collective enhancement and suppression of light scattered by an array of tweezer-trapped ^{87}Rb atoms positioned within a strongly coupled Fabry-Pérot optical cavity. We illuminate the array with light directed transverse to the cavity axis, in the low saturation regime, and detect photons scattered into the cavity. For an array with integer-optical-wavelength spacing each atom scatters light into the cavity with nearly identical scattering amplitude, leading to an observed N^{2} scaling of cavity photon number as the atom number increases stepwise from N=1 to N=8.
View Article and Find Full Text PDFSubsystem readout during a quantum process, or mid-circuit measurement, is crucial for error correction in quantum computation, simulation, and metrology. Ideal mid-circuit measurement should be faster than the decoherence of the system, high-fidelity, and nondestructive to the unmeasured qubits. Here, we use a strongly coupled optical cavity to read out the state of a single tweezer-trapped ^{87}Rb atom within a small tweezer array.
View Article and Find Full Text PDFWe analytically identify a new class of quantum scars protected by spatiotemporal translation symmetries, dubbed Floquet-Bloch scars. They are distinguished from previous (quasi-)static scars by a rigid spectral pairing only possible in Floquet systems, where strong interaction and drivings equalize the quasienergy corrections to all scars and maintain their spectral spacings against generic bilinear perturbations. Scars then enforce the spatial localization and rigid discrete time crystal (DTC) oscillations as verified numerically in a trimerized kagome lattice model relevant to recent cold atom experiments.
View Article and Find Full Text PDFA quantum system's energy landscape may have points where multiple energy surfaces are degenerate and that exhibit singular geometry of the wave function manifold, with major consequences for the system's properties. Ultracold atoms in optical lattices have been used to indirectly characterize such points in the band structure. We measured the non-Abelian transformation produced by transport directly through the singularities.
View Article and Find Full Text PDF