Publications by authors named "D M Sostina"

Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb@CN, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb@CN exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.

View Article and Find Full Text PDF

Single lanthanide atoms and molecules are promising candidates for atomic data storage and quantum logic due to the long lifetime of their magnetic quantum states. Accessing and controlling these states through electrical transport requires precise knowledge of their electronic configuration at the level of individual atomic orbitals, especially of the outer shells involved in transport. However, no experimental techniques have so far shown the required sensitivity to probe single atoms with orbital selectivity.

View Article and Find Full Text PDF

The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms.

View Article and Find Full Text PDF

Effect of magnetization generated by synchrotron or laser radiation in magnetically-doped and pristine topological insulators (TIs) is presented and analyzed using angle-resolved photoemission spectroscopy. It was found that non-equal photoexcitation of the Dirac cone (DC) states with opposite momenta and spin orientation indicated by the asymmetry in photoemission intensity of the DC states is accompanied by the k-shift of the DC states relative to the non-spin-polarized conduction band states located at k = 0. We relate the observed k-shift to the induced surface in-plane magnetic field and corresponding magnetization due to the spin accumulation.

View Article and Find Full Text PDF