Anxiety and depressive disorders are associated with cognitive control deficits, yet their underlying neural mechanisms remain poorly understood. Here, we used high-resolution stereotactic EEG (sEEG) to determine how anxiety and/or depression modulates neural and behavioral responses when cognitive control is engaged in individuals with medically refractory epilepsy undergoing sEEG monitoring for surgical evaluation. We analyzed sEEG data recorded from frontotemporal regions of 29 participants (age range: 19-55, mean age: 35.
View Article and Find Full Text PDFModular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 μm pitch demonstrated roughly circular domains approximately 1.
View Article and Find Full Text PDFCefazolin is the most common antibiotic used for prophylaxis in obstetrics and gynecology. Among those with a penicillin allergy, alternative antibiotics are often chosen for prophylaxis, given fears of cross-reactivity between penicillin and cefazolin. Alternative antibiotics in this setting are associated with adverse sequelae, including surgical site infection, induction of bacterial resistance, higher costs to the healthcare system, and possible Clostridium difficile infection.
View Article and Find Full Text PDFModular organization is fundamental to cortical processing, but its presence is human association cortex is unknown. We characterized phoneme processing with 128-1024 channel micro-arrays at 50-200µm pitch on superior temporal gyrus of 7 patients. High gamma responses were highly correlated within ~1.
View Article and Find Full Text PDFNeuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease.
View Article and Find Full Text PDF