After birth, tissues grow continuously until reaching adult size, with each organ exhibiting unique cellular dynamics, growth patterns, and (stem or non-stem) cell sources. Using a suite of experimental and computational multiscale approaches, we found that aortic expansion is guided by specific biological principles and scales with the vertebral column rather than animal body weight. Expansion proceeds via two distinct waves of arterial cell proliferation along blood flow that are spatially stochastic, yet temporally coordinated.
View Article and Find Full Text PDFAutosomal dominant mutations in , which encodes intracellular fibroblast growth factor 14 (iFGF14), underlie spinocerebellar ataxia type 27A (SCA27A), a devastating multisystem disorder resulting in progressive deficits in motor coordination and cognitive function. Mice lacking iFGF14 ( ) exhibit similar phenotypes, which have been linked to iFGF14-mediated modulation of the voltage-gated sodium (Nav) channels that control the high frequency repetitive firing of Purkinje neurons, the main output neurons of the cerebellar cortex. To investigate the pathophysiological mechanisms underlying SCA27A, we developed a targeted knock-in strategy to introduce the first point mutation identified in into the mouse locus ( ), we determined the impact of expression of the mutant allele on the motor performance of adult animals and on the firing properties of mature Purkinje neurons in acute cerebellar slices.
View Article and Find Full Text PDFMutations in , which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with progressive deficits in motor coordination and cognitive function. Mice ( ) lacking iFGF14 display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect excitability of cerebellar Purkinje neurons, owing to the loss of iFGF14-mediated regulation of the voltage-dependence of inactivation of the fast transient component of the voltage-gated Na (Nav) current, I . Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal and cortical pyramidal neurons.
View Article and Find Full Text PDFAlveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs).
View Article and Find Full Text PDFAlveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB).
View Article and Find Full Text PDF