Publications by authors named "D M Kuznetsova"

The most effective method of treating tumors localized in the liver remains resection. However, in the presence of concomitant pathology, the regenerative potential of the liver is significantly reduced. To date, there is insufficient fundamental data on the mechanisms responsible for the disruption of liver regeneration, and there is no effective method for assessing its regenerative potential.

View Article and Find Full Text PDF

Unlabelled: Presently, there is a need in the developing new approaches to stimulate liver regeneration, which would make its recovery more effective after resection. Application of nanoparticles, loaded with small bioactive molecules, with their targeted delivery into the liver is a promising approach. is to study the interaction of nanoparticles with various types of hepatic cells on the models of liver slices and primary hepatic cell cultures using the methods of multiphoton microscopy with fluorescence lifetime imaging.

View Article and Find Full Text PDF

The presence of molecular mutations in colorectal cancer (CRC) is a decisive factor in selecting the most effective first-line therapy. However, molecular analysis is routinely performed only in a limited number of patients with remote metastases. We propose to use tissue stiffness as a marker of the presence of molecular mutations in CRC samples.

View Article and Find Full Text PDF

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca levels, preceded systemic changes in jasmonate content.

View Article and Find Full Text PDF

Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies.

View Article and Find Full Text PDF