Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFDespite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera for in-situ monitoring of extrusion outcomes during embedded bioprinting.
View Article and Find Full Text PDFAlagille syndrome (ALGS) is a rare, cholestatic multiorgan disease associated with bile duct paucity, leading to cholestasis. Clinical symptoms of cholestasis include debilitating pruritus, xanthomas, fat-soluble vitamin deficiencies, growth failure, renal disease and impaired health-related quality of life (HRQoL). The main objective was to review the current literature on the epidemiological, clinical, psychosocial and economic burden of ALGS in view of the development of ileal bile acid transporter (IBAT) inhibitors.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.csbj.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We developed a novel "two-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF.
View Article and Find Full Text PDF