Publications by authors named "D M Hushpulian"

Matrikines (MKs), the products of enzymatic fragmentation of various extracellular matrix (ECM) proteins, regulate cellular activity by interacting with specific receptors. MKs affect cell growth, proliferation, and migration, can induce apoptosis and autophagy, and are also effectively used in biomedicine and functional nutrition. Recently, there has been great interest in the structural features and biological activity of MKs from various sources.

View Article and Find Full Text PDF

Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Nrf2 is a key transcription factor that regulates the cellular response to stress and promotes the expression of genes that protect cells by detoxifying drugs, modulating the immune system, and managing iron metabolism.
  • Current Nrf2 activators, used in treating diseases like multiple sclerosis and Friedreich's ataxia, have side effects due to their non-specific actions, and Nrf2 is negatively regulated by Bach1, a protein that can interfere with Nrf2's activation, especially in neurodegenerative diseases like Parkinson's.
  • To maximize the therapeutic effects of Nrf2 activation, combining strategies to stabilize Nrf2 and inhibit Bach1 is essential, and recent research is focusing on developing small molecule inhibitors of Bach1 to
View Article and Find Full Text PDF

The carotenoids mixture (MC) isolated from the starfish contains more than 50% astaxanthin, 4-6% each zeaxanthine and lutein, and less pharmacologically active components such as free fatty acids and their glycerides. Astaxanthin, the major component of MC, belongs to the xanthophyll class of carotenoids, and is well known for its antioxidant properties. In this work, in vitro and in vivo studies on the biological activity of MC were carried out.

View Article and Find Full Text PDF