Publications by authors named "D M Gang"

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

Increasingly, molecular chemistry and pharmacology are complementing classical studies in the field of archaeology. In this case, we present the results of the chemical study of pipe residues found in the context of an archaeological mission (AROMA mission: Archaeology of the Exercise of Royal and Magico-Religious Power) in the royal palaces of Abomey (Benin), dating from the 17th-19th century. The search for many products was carried out (mainly tobacco, cannabis) but surprisingly only highlighted the presence of caffeine residues.

View Article and Find Full Text PDF

Remarkable progress has been made in the radical cascade cyclization of heteroaryl- or aryl-tethered alkenes to construct benzene-fused frameworks via the cracking of aryl C-H bonds. In contrast, the radical cascade cyclization of linear dienes through the cracking of vinyl C-H bonds to construct nonbenzene-fused ring frameworks with endocyclic double bonds has significantly lagged behind, and major advances have largely been restricted to the generation of 5-membered heterocycles, such as pyrrolinones. Herein, we report the silver-mediated regioselective sulfonylation-cyclization of linear dienes with sodium sulfinates to form sulfonylated 6- and 7-membered cyclic enamines.

View Article and Find Full Text PDF

Regression analysis is a powerful tool in adsorption studies. Researchers often favor linear regression for its simplicity when fitting isotherm models, such as the Langmuir equation. Validating regression assumptions is crucial to ensure that the model accurately represents the data and allows appropriate inferences.

View Article and Find Full Text PDF

Indigo and indirubin are derived from indoxyl molecules, which generally occur as indoxyl glycosides in woad (Isatis tinctoria L.) and other indigo-producing plants. Indoxyl glycosides are biosynthesized from indole via 3-hydroxylation to form indoxyl, followed by one or more glycosylations.

View Article and Find Full Text PDF