Publications by authors named "D M Escala"

Oscillatory kinetics coupled to diffusion can produce traveling waves as observed in physical, chemical, and biological systems. We show experimentally that the properties of such waves can be controlled by fluid stretching and compression in a hyperbolic flow. Localized packet waves consisting in a train of parallel waves can develop due to a balance between diffusive broadening and advective compression along the unstable manifold.

View Article and Find Full Text PDF

Radial Reaction-Diffusion-Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts.

View Article and Find Full Text PDF

The emergence of self-organized behaviors such as spatio-temporal oscillations is well-known for complex reactions involving nonlinear chemical or thermal feedback. Recently, it was shown that local oscillations of the chemical species concentration can be induced under isothermal batch conditions for simple bimolecular A + B → C reactions, provided they are actively coupled with hydrodynamics. When two reactants A and B, initially separated in space, react upon diffusive contact, damped spatio-temporal oscillations could develop when the surface tension increases sufficiently in the reaction zone.

View Article and Find Full Text PDF

Chemohydrodynamic patterns due to the interplay of buoyancy-driven instabilities and reaction-diffusion patterns are studied experimentally in a vertical quasi-two-dimensional reactor in which two solutions A and B containing separate reactants of the oscillating Belousov-Zhabotinsky system are placed in contact along a horizontal contact line where excitable or oscillating dynamics can develop. Different types of buoyancy-driven instabilities are selectively induced in the reactive zone depending on the initial density jump between the two layers, controlled here by the bromate salt concentration. Starting from a less dense solution above a denser one, two possible differential diffusion instabilities are triggered depending on whether the fast diffusing sulfuric acid is in the upper or lower solution.

View Article and Find Full Text PDF

Fluid instabilities have been the subject of study for a long time. Despite all the extensive knowledge, they still constitute a serious challenge for many industrial applications. Here, we experimentally consider an interface between two fluids with different viscosities and analyze their relative displacement.

View Article and Find Full Text PDF