Publications by authors named "D M Czajkowsky"

Atomic Force Microscopy (AFM) is a powerful technique with widespread applications in various scientific fields, including biology. It operates by precisely detecting the interaction between a sharp tip and a sample surface, providing high-resolution topographical information and mechanical properties at a nanoscale. Through the years, a deeper understanding of this tip-sample interaction and the mechanisms by which it can be more precisely regulated have invariably led to improvements in AFM imaging.

View Article and Find Full Text PDF

Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures.

View Article and Find Full Text PDF

The faithful transmission of a cell's identity and functionality to its daughters during mitosis requires the proper assembly of mitotic chromosomes from interphase chromatin in a process that involves significant changes in the genome-bound material, including the RNA. However, our understanding of the RNA that is associated with the mitotic chromosome is presently limited. Here, we present complete and quantitative characterizations of the full-length mitotic chromosome-associated RNAs (mCARs) for 3 human cell lines, a monkey cell line, and a mouse cell line derived from high-depth RNA sequencing (3 replicates, 47 M mapped read pairs for each replicate).

View Article and Find Full Text PDF

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled.

View Article and Find Full Text PDF