We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of vibrational modes, uncorrelated for different spins, serving as a model for dynamic nuclear polarization protocols. We show that even when the many-body eigenstates of the system are ergodic, a sufficiently strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect. Our results provide an explanation of the breakdown of the thermal mixing regime experimentally observed above 4-5 K in these protocols.
View Article and Find Full Text PDFWe develop a theory of cavity quantum electrodynamics for a 2D electron gas in the presence of Rashba spin-orbit coupling and perpendicular static magnetic field, coupled to spatially nonuniform multimode quantum cavity photon field. We demonstrate that the lowest polaritonic frequency of the full Hamiltonian can vanish for realistic parameters, achieving the Dicke superradiant quantum phase transition. This singular behavior originates from soft spin-flip transitions possessing a nonvanishing dipole moment at nonzero wave vectors and can be viewed as a static paramagnetic instability.
View Article and Find Full Text PDFMonolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX_{2} (X being S or Se) spin forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe_{2} monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.
View Article and Find Full Text PDFThis Letter addresses the dynamical quantum problem of a driven discrete energy level coupled to a semi-infinite continuum whose density of states has a square-root-type singularity, such as states of a free particle in one dimension or quasiparticle states in a BCS superconductor. The system dynamics is strongly affected by the quantum-mechanical repulsion between the discrete level and the singularity, which gives rise to a bound state, suppresses the decay into the continuum, and can produce Stueckelberg oscillations. This quantum coherence effect may limit the performance of mesoscopic superconducting devices, such as the quantum electron turnstile.
View Article and Find Full Text PDFThe Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound.
View Article and Find Full Text PDF