Phased microphone array methods are increasingly used to localize and quantify noise sources of aircraft under flight condition. However, beamforming results suffer from loss of image resolution and corruption of sound levels due to atmospheric turbulence causing coherence loss between microphones. A synthesis method is presented that reproduces these effects in a virtual environment.
View Article and Find Full Text PDFLand subsidence is impacting large populations in coastal Asia via relative sea-level rise (RSLR). Here we assesses these risks and possible response strategies for China, including estimates of present rates of RSLR, flood exposure and risk to 2050. In 2015, each Chinese coastal resident experienced on average RSLR of 11 to 20 mm/yr.
View Article and Find Full Text PDFClimate change-induced sea level rise (SLR) is projected to be substantial, triggering human adaptation responses, including increasing protection and out-migration from coastlines. Yet, in macroeconomic assessments of SLR the latter option has been given little attention. We fill this gap by providing a global analysis of the macroeconomic effects of adaptation to SLR, including coastal migration, focusing on the higher end of SLR projections until 2050.
View Article and Find Full Text PDFResidents around airports are impacted by noise produced by civil aircraft operations. With the aim of reducing the negative effects of noise, new low-noise aircraft concepts and flight procedures are being developed. The design processes and the assessments of design variants can be supported by auralization of virtual flyovers.
View Article and Find Full Text PDFThis study provides a literature-based comparative assessment of uncertainties and biases in global to world-regional scale assessments of current and future coastal flood risks, considering mean and extreme sea-level hazards, the propagation of these into the floodplain, people and coastal assets exposed, and their vulnerability. Globally, by far the largest bias is introduced by not considering human adaptation, which can lead to an overestimation of coastal flood risk in 2100 by up to factor 1300. But even when considering adaptation, uncertainties in how coastal societies will adapt to sea-level rise dominate with a factor of up to 27 all other uncertainties.
View Article and Find Full Text PDF