Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum.
View Article and Find Full Text PDFDermatologie (Heidelb)
September 2023
Background: Dermatohistological assessment is the gold standard in the diagnosis of melanoma. As a subjective method, this depends, among other things, on the expertise of the examiner.
Aim: A new objective method of investigation-dermatohistofluoroscopy-aims to improve the diagnostic reliability of melanoma diagnosis.
The melanin fluorescence emitted by pigment cells of the human skin has been a central research topic for decades, because melanin, on the one hand, protects against (solar) radiation in the near-UV range, whereas on the other hand, melanocytes are the starting point for the malignant transformation into melanoma. Until recently, however, melanin fluorescence was not accessible in the context of conventional spectroscopy, because it is ultraweak and is overshadowed by the more intense so-called autofluorescence of endogenous fluorophores. The advent of a new method of laser spectroscopy has made this melanin fluorescence measurable in vivo.
View Article and Find Full Text PDFBackground: Caucasians with red hair and fair skin have a remarkably increased risk of malignant melanoma compared to non-redhead Caucasians.
Objectives: With the aim of a reliable melanoma diagnosis in redheads, the application of dermatofluoroscopy was analyzed in 16 patients with red hair. Most of them had been included in a clinical dermatofluoroscopy study for patients with the suspicion of melanoma.
Parkinson's disease is associated with an increased risk of melanoma (and vice versa). Several hypotheses underline this link, such as pathways affecting both melanin and neuromelanin. For the first time, the fluorescence of melanin and neuromelanin is selectively accessible using a new method of nonlinear spectroscopy, based on a stepwise two-photon excitation.
View Article and Find Full Text PDF