Publications by authors named "D Leporini"

We characterize, using molecular dynamics simulations, the structure and mechanical response of a porous glassy system, obtained via arrested phase separation of a model polymer melt. In the absence of external driving, coarsening dynamics, with power-law time dependence, controls the slow structural evolution, in agreement with what was reported for other phase-separating systems. The mechanical response was investigated in athermal quasi-static conditions.

View Article and Find Full Text PDF

A polymer model exhibiting heterogeneous Johari−Goldstein (JG) secondary relaxation is studied by extensive molecular-dynamics simulations of states with different temperature and pressure. Time−temperature−pressure superposition of the primary (segmental) relaxation is evidenced. The time scales of the primary and the JG relaxations are found to be highly correlated according to a power law.

View Article and Find Full Text PDF

Two neural networks (NN) are designed to predict the particle mobility of a molecular glassformer in a wide time window ranging from vibrational dynamics to structural relaxation. Both NNs are trained by information concerning the local structure of the environment surrounding a given particle. The only difference in the learning procedure is the inclusion (NN ) or not (NN ) of the information provided by the fast, vibrational dynamics and quantified by the local Debye-Waller factor.

View Article and Find Full Text PDF

Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications.

View Article and Find Full Text PDF

The relaxation properties of viscous liquids close to their glass transition (GT) have been widely characterised by the statistical tool of time correlation functions. However, the strong influence of ubiquitous non-linearities calls for new, alternative tools of analysis. In this respect, information theory-based observables and, more specifically, mutual information (MI) are gaining increasing interest.

View Article and Find Full Text PDF