We employ the exact-factorization formalism to study the coupled dynamics of photons, electrons, and nuclei at the quantum mechanical level, proposing illustrative examples of model situations of nonadiabatic dynamics and spontaneous emission of electron-nuclear systems in the regime of strong light-matter coupling. We make a particular choice of factorization for such a multi-component system, where the full wavefunction is factored as a conditional electronic amplitude and a marginal photon-nuclear amplitude. Then, we apply the coupled-trajectory mixed quantum-classical (CTMQC) algorithm to perform trajectory-based simulations, by treating photonic and nuclear degrees of freedom on equal footing in terms of classical-like trajectories.
View Article and Find Full Text PDFDue to its efficiency and flexibility, the -mode expansion is a frequently used tool for representing molecular potential energy surfaces in quantum chemical simulations. In this work, we investigate the performance of -mode expansion-based models of kinetic energy operators in general polyspherical coordinate systems. In particular, we assess the operators with respect to accuracy in vibrationally correlated calculations and their effect on potential energy surface construction with the adaptive density guided approach.
View Article and Find Full Text PDFThe efficiency of quantum chemical simulations of nuclear motion can in many cases greatly benefit from the application of curvilinear coordinate systems. This is rooted in the fact that a set of smartly selected curvilinear coordinates may represent the motion naturally well, thus decreasing the couplings between motions in these coordinates. In this study, we assess the validity of different Taylor expansion-based approximations of kinetic energy operators in a (curvilinear) polyspherical parametrization.
View Article and Find Full Text PDFThrough approximating electron-nuclear correlation terms in the exact factorization approach, trajectory-based methods have been derived and successfully applied to the dynamics of a variety of light-induced molecular processes, capturing quantum (de)coherence effects rigorously. These terms account for the coupling among the trajectories, recovering the nonlocal nature of quantum nuclear dynamics that is completely overlooked in traditional independent-trajectory algorithms. Nevertheless, some of the approximations introduced in the derivation of some of these methods do not conserve the total energy.
View Article and Find Full Text PDFIn 1963 Smolyak introduced an approach to overcome the exponential scaling with respect to the number of variables of the direct product size [S. A. Smolyak Soviet Mathematics Doklady, 4, 240 (1963)].
View Article and Find Full Text PDF