Publications by authors named "D Lautier"

The hMutS alpha (hMSH2-hMSH6) protein heterodimer plays a critical role in the detection of DNA mispairs in the mismatch repair (MMR) process. We recently reported that hMutS alpha proteins were degraded by the ubiquitin-proteasome pathway in a cell-type-dependent manner, indicating that one or several regulator(s) may interfere with hMutS alpha protein ubiquitination and degradation. On the other hand, we and others have shown that protein kinase C (PKC) is involved as a positive regulator of MMR activity.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) deals with bulky DNA damages. However, the regulation of this process is still unclear. Here, we show that both cell resistance to genotoxic agents that generate DNA lesions corrected by NER and in vitro NER activity are correlated with atypical protein kinase C (PKC) zeta expression levels.

View Article and Find Full Text PDF

Mismatch repair plays a critical role in genome stability. This process requires several proteins including hMSH2/hMSH6 (hMutSalpha) heterodimer involved in the first stage of the process, the mispair recognition. We previously reported that in U937 and HL-60 cell lines, hMSH2 and hMSH6 protein expression was much lower than that in HeLa and KG1a cells.

View Article and Find Full Text PDF

Mammalian mismatch repair (MMR) plays a prominent role in genomic stability and toxicity induced by some DNA damaging agents. Advance in the appreciation of regulation mechanisms of the key MMR protein hMSH2 would certainly lead to valuable information on its role and to a better understanding of MMR system dysfunctions with respect to their consequences in cells. We have previously reported that, in myeloid leukemic U937 cell line, the expression of hMSH2 MMR protein is regulated by protein kinase C (PKC) activity.

View Article and Find Full Text PDF

Both clinical and experimental evidence illustrate that p190 and p210 BCR/ABL oncogenic tyrosine kinases induce resistance to DNA damage and confer an intrinsic genetic instability. Here, we investigated whether BCR/ABL expression could modulate nucleotide excision repair (NER). We found that ectopic expression of p210 BCR/ABL in murine lymphoid BaF3 cell line inhibited NER activity in vitro, promoting hypersensitivity of these cells to ultraviolet (UV) treatment and facilitating a mutator phenotype.

View Article and Find Full Text PDF