VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.
View Article and Find Full Text PDFKnife-edge imaging is a successful method for determining the wavefront distortion of focusing optics such as Kirkpatrick-Baez mirrors or compound refractive lenses. In this study, the wavefront error of an imperfect elliptical mirror is predicted by developing a knife-edge program using the SHADOW/OASYS platform. It is shown that the focusing optics can be aligned perfectly by minimizing the parabolic and cubic coefficients of the wavefront error.
View Article and Find Full Text PDFVisible light optical elements such as lenses and mirrors have counterparts for X-rays. In the visible regime, a variable focusing power can be achieved by an Alvarez lens which consists of a pair of inline planar refractors with a cubic thickness profile. When the two refractors are laterally displaced in opposite directions, the parabolic component of the wavefront is changed resulting in a longitudinal displacement of the focus.
View Article and Find Full Text PDFAberrations introduced during fabrication degrade the performance of X-ray optics and their ability to achieve diffraction limited focusing. Corrective optics can counteract these errors by introducing wavefront perturbations prior to the optic which cancel out the distortions. Here we demonstrate two-dimensional wavefront correction of an aberrated Kirkpatrick-Baez mirror pair using adaptable refractive structures.
View Article and Find Full Text PDFPtychography is a scanning coherent diffraction imaging technique which provides high resolution imaging and complete spatial information of the complex electric field probe and sample transmission function. Its ability to accurately determine the illumination probe has led to its use at modern synchrotrons and free-electron lasers as a wavefront-sensing technique for optics alignment, monitoring and correction. Recent developments in the ptychography reconstruction process now incorporate a modal decomposition of the illuminating probe and relax the restriction of using sources with high spatial coherence.
View Article and Find Full Text PDF