Publications by authors named "D Lathouwers"

HollandPTC is an independent outpatient center for proton therapy, scientific research, and education. Patients with different types of cancer are treated with Intensity Modulated Proton Therapy (IMPT). Additionally, the HollandPTC R&D consortium conducts scientific research into the added value and improvements of proton therapy.

View Article and Find Full Text PDF

The integration of proton beamlines with x-ray imaging/irradiation platforms has opened up possibilities for image-guided Bragg peak irradiations in small animals. Such irradiations allow selective targeting of normal tissue substructures and tumours. However, their small size and location pose challenges in designing experiments.

View Article and Find Full Text PDF

To assess the viability of a physics-based, deterministic and adjoint-capable algorithm for performing treatment planning system independent dose calculations and for computing dosimetric differences caused by anatomical changes.A semi-numerical approach is employed to solve two partial differential equations for the proton phase-space density which determines the deposited dose. Lateral hetereogeneities are accounted for by an optimized (Gaussian) beam splitting scheme.

View Article and Find Full Text PDF

Oxygen depletion is generally believed to play an important role in the FLASH effect-a differential reduction of the radiosensitivity of healthy tissues, relative to that of the tumour under ultra-high dose-rate (UHDR) irradiation conditions. In proton therapy (PT) with pencil-beam scanning (PBS), the deposition of dose, and, hence, the degree of (radiolytic) oxygen depletion varies both spatially and temporally. Therefore, the resulting oxygen concentration and the healthy-tissue sparing effect through radiation-induced hypoxia varies both spatially and temporally as well.

View Article and Find Full Text PDF

A Geant4 based simulation platform of the Holland Proton Therapy Centre (HollandPTC, Netherlands) R&D beamline (G4HPTC-R&D) was developed to enable the planning, optimisation and advanced dosimetry for radiobiological studies. It implemented a six parameter non-symmetrical Gaussian pencil beam surrogate model to simulate the R&D beamline in both a pencil beam and passively scattered field configuration. Three different experimental proton datasets (70 MeV, 150 MeV, and 240 MeV) of the pencil beam envelope evolution in free air and depth-dose profiles in water were used to develop a set of individual parameter surrogate functions to enable the modelling of the non-symmetrical Gaussian pencil beam properties with only the ProBeam isochronous cyclotron mean extraction proton energy as input.

View Article and Find Full Text PDF