Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb.
View Article and Find Full Text PDFPlacental transfusion has been thought to be the main benefit of delayed umbilical cord clamping (DCC) in preterm neonates. However, the importance of cardiovascular stability provided by allowing lung aeration prior to cord clamping has recently been highlighted. We aimed to determine the influence of blood volume changes on cardiovascular stability at birth.
View Article and Find Full Text PDFDelaying umbilical cord clamping until after aeration of the lung (physiological-based cord clamping; PBCC) maintains cardiac output and oxygenation in preterm lambs at birth, however, its efficacy after intrauterine inflammation is not known. Given the high incidence of chorioamnionitis in preterm infants, we investigated whether PBCC conferred any benefits compared to immediate cord clamping (ICC) in preterm lambs exposed antenatally to 7 days of intrauterine inflammation. Ultrasound guided intraamniotic injection of 20 mg Lipopolysaccharide (from :055:B5) was administered to pregnant ewes at 0.
View Article and Find Full Text PDFErythropoietin (EPO) is being trialled in preterm infants to reduce brain injury, but high doses increase lung injury in ventilated preterm lambs. We aimed to determine whether early administration of lower doses of EPO could reduce ventilation-induced lung injury and systemic inflammation in preterm lambs. Ventilation was initiated in anaesthetized preterm lambs [125 ± 1 (SD) days gestation] using an injurious strategy for the first 15 min.
View Article and Find Full Text PDFNeonatal hypoxic ischemic encephalopathy (HIE) resulting from intrapartum asphyxia is a global problem that causes severe disabilities and up to 1 million deaths annually. A variant form of activated protein C, 3K3A-APC, has cytoprotective properties that attenuate brain injury in models of adult stroke. In this study, we compared the ability of 3K3A-APC and APC (wild-type (wt)) to attenuate neonatal brain injury, using the spiny mouse (Acomys cahirinus) model of intrapartum asphyxia.
View Article and Find Full Text PDF