Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening.
View Article and Find Full Text PDFStroke is the number one cause of morbidity in the United States and number two cause of death worldwide. There is a critical unmet medical need for more effective treatments of ischemic stroke, and this need is increasing with the shift in demographics to an older population. Recently, several studies have reported the therapeutic potential of stem cell-derived exosomes as new candidates for cell-free treatment in stoke.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) can be used as a renewable source of endothelial cells for treating cardiovascular disease and other ischemic conditions. Here, we present the derivation and characterization of a panel of distinct clonal embryonic endothelial progenitor cells (eEPCs) lines that were differentiated from human embryonic stem cells (hESCs). The hESC line, ESI-017, was first partially differentiated to produce candidate cultures from which eEPCs were cloned.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) first came to the Unites States in January 2020. Though adult and pediatric vaccines became available to the public, vaccine uptake among youth and particularly younger children has been gradual. This explanatory study aimed to better understand parents' attitudes and beliefs of the pediatric COVID-19 vaccine and the barriers and facilitators to vaccine uptake in a rural community through a brief, online demographic survey, and in-depth qualitative interviews.
View Article and Find Full Text PDFMulticellular life evolved from simple unicellular organisms that could replicate indefinitely, being essentially ageless. At this point, life split into two fundamentally different cell types: the immortal germline representing an unbroken lineage of cell division with no intrinsic endpoint and the mortal soma, which ages and dies. In this review, we describe the germline as clock-free and the soma as clock-bound and discuss aging with respect to three DNA-based cellular clocks (telomeric, DNA methylation, and transposable element).
View Article and Find Full Text PDF