In this work dynamic models of the continuous crystallization, filtration, deliquoring, washing, and drying steps are introduced, which are developed in the open-source pharmaceutical modeling tool PharmaPy. These models enable the simulation and digital design of an integrated continuous two-stage crystallization and filtration-drying carousel system. The carousel offers an intensified process that can manufacture products with tailored properties through optimal design and control.
View Article and Find Full Text PDFComput Appl Eng Educ
November 2023
The use of digital tools in pharmaceutical manufacturing has gained traction over the past two decades. Whether supporting regulatory filings or attempting to modernize manufacturing processes to adopt new and quickly evolving Industry 4.0 standards, engineers entering the workforce must exhibit proficiency in modeling, simulation, optimization, data processing, and other digital analysis techniques.
View Article and Find Full Text PDFFast and reliable model development frameworks are required to support current trends in modernization of pharmaceutical processing, promoting the use of digital platforms to assist process design and operation. In this work, we use a parameter estimation framework built into the PharmaPy library to determine rate parameters and uncertainty regions of different mechanistic and semi-empirical kinetic expressions for the synthesis of the drug lomustine. The parameter estimation procedure was complemented by identifiability analysis, resulting in simplified reaction mechanisms.
View Article and Find Full Text PDFIncreased interest in the pharmaceutical industry to transition from batch to continuouos manufacturing motivates the use of digital frameworks that allow systematic comparison of candidate process configurations. This paper evaluates the technical and economic feasibility of different end-to-end optimal process configurations, . batch, hybrid and continuous, for small-scale manufacturing of an active pharmaceutical ingredient.
View Article and Find Full Text PDFThe problem of performing model-based process design and optimization in the pharmaceutical industry is an important and challenging one both computationally and in choice of solution implementation. In this work, a framework is presented to directly utilize a process simulator via callbacks during derivative-based optimization. The framework allows users with little experience in translating mechanistic ODEs and PDEs to robust, fully discretized algebraic formulations, required for executing simultaneous equation-oriented optimization, to obtain mathematically guaranteed optima at a competitive solution time when compared with existing derivative-free and derivative-based frameworks.
View Article and Find Full Text PDF