Publications by authors named "D L Nyenhuis"

Tsg101 is a highly conserved protein best known as an early-functioning component of cellular ESCRT machinery participating in recognition, sorting, and trafficking of cellular cargo to various intracellular destinations. It shares sequence and structural homology to canonical ubiquitin-conjugating (E2) enzymes and is linked to diverse events regulated by Ub signaling. How it might fulfill these roles is unclear.

View Article and Find Full Text PDF

We recently identified N-cadherin as a novel receptor for fibrin and localized complementary binding sites within the fibrin βN-domains and the third and fifth extracellular domains (EC3 and EC5) of N-cadherin. We also hypothesized that the His16 and Arg17 residues of the βN-domains and the (Asp/Glu)-X-(Asp/Glu) motifs present in the EC3 and EC5 domains may play roles in the interaction between fibrin and N-cadherin. The primary objectives of this study were to test these hypotheses and to further clarify the structural basis for this interaction.

View Article and Find Full Text PDF
Article Synopsis
  • Tsg101 is a protein critical for cellular processes related to transport, specifically involved in recognizing tagged proteins and recruiting other necessary components for transport, particularly during virus budding.* -
  • The study highlights how Tsg101 interacts with ubiquitin (Ub) ligases (E3 enzymes), revealing that disrupting a specific motif in Tsg101 shifts the budding process’s dependency to another ligase, Nedd4L, showing the intricate interplay between these proteins.* -
  • Small molecule experiments showed that disrupting Tsg101’s ability to bind Ub or Nedd4 halted viral budding early in the process, emphasizing Tsg101's role in regulating E3 ligases and its importance in viral particle assembly and overall cellular functions.*
View Article and Find Full Text PDF

Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the β-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility.

View Article and Find Full Text PDF

The varying conformational states of amyloid-forming protein monomers can determine their fibrillation outcome. In this study, we utilize solution NMR and the paramagnetic relaxation enhancement (PRE) effect to observe monomer properties of the repeat domain (RPT) from a human functional amyloid, premelanosomal protein, Pmel17. After excision from the full-length protein, RPT can self-assemble into amyloid fibrils, functioning as a scaffold for melanin deposition.

View Article and Find Full Text PDF